Lecture Notes on Knot Invariants (eBook)

by (Author)

  • 54,940 Words
  • 244 Pages

The volume is focused on the basic calculation skills of various knot invariants defined from topology and geometry. It presents the detailed Hecke algebra and braid representation to illustrate the original Jones polynomial (rather than the algebraic formal definition many other books and research articles use) and provides self-contained proofs of the Tait conjecture (one of the big achievements from the Jones invariant). It also presents explicit computations to the Casson–Lin invariant via braid representations.With the approach of an explicit computational point of view on knot invariants, this user-friendly volume will benefit readers to easily understand low-dimensional topology from examples and computations, rather than only knowing terminologies and theorems.Contents:Basic Knots, Links and Their EquivalencesBraids and LinksKnot and Link InvariantsJones PolynomialsCasson Type InvariantsUndergraduate and graduate students interested in learning topology and low dimensional topology.Key Features:Applies a computational approach to understand knot invariants with geometric meaningsProvides a complete proof of Tait's conjectures from an original Jones polynomial definitionGives recent new knot invariants from the approach of algebraic geometry (characteristic variety)Readers will get a hands-on approach to the topological concepts and various invariant, instead of just knowing more fancy words

The volume is focused on the basic calculation skills of various knot invariants defined from topology and geometry. It presents the detailed Hecke algebra and braid representation to illustrate the original Jones polynomial (rather than the algebraic formal definition many other books and research articles use) and provides self-contained proofs of the Tait conjecture (one of the big achievements from the Jones invariant). It also presents explicit computations to the Casson–Lin invariant via braid representations.With the approach of an explicit computational point of view on knot invariants, this user-friendly volume will benefit readers to easily understand low-dimensional topology from examples and computations, rather than only knowing terminologies and theorems.Contents:Basic Knots, Links and Their EquivalencesBraids and LinksKnot and Link InvariantsJones PolynomialsCasson Type InvariantsUndergraduate and graduate students interested in learning topology and low dimensional topology.Key Features:Applies a computational approach to understand knot invariants with geometric meaningsProvides a complete proof of Tait's conjectures from an original Jones polynomial definitionGives recent new knot invariants from the approach of algebraic geometry (characteristic variety)Readers will get a hands-on approach to the topological concepts and various invariant, instead of just knowing more fancy words


  • 0
    0
  • 1
    1
  • 2
    2
  • 3
    3
  • 4
    4
  • 5
    5
  • 6
    6
  • 7
    7
  • 8
    8
  • 9
    9
  • 0
    0
  • 1
    1
  • 2
    2
  • 3
    3
  • 4
    4
  • 5
    5
  • 6
    6
  • 7
    7
  • 8
    8
  • 9
    9
  • 0
    0
  • 1
    1
  • 2
    2
  • 3
    3
  • 4
    4
  • 5
    5
  • 6
    6
  • 7
    7
  • 8
    8
  • 9
    9
:
  • 0
    0
  • 1
    1
  • 2
    2
  • 3
    3
  • 4
    4
  • 5
    5
  • 6
    6
  • 7
    7
  • 8
    8
  • 9
    9
  • 0
    0
  • 1
    1
  • 2
    2
  • 3
    3
  • 4
    4
  • 5
    5
  • 6
    6
  • 7
    7
  • 8
    8
  • 9
    9
:
  • 0
    0
  • 1
    1
  • 2
    2
  • 3
    3
  • 4
    4
  • 5
    5
  • 6
    6
  • 7
    7
  • 8
    8
  • 9
    9
  • 0
    0
  • 1
    1
  • 2
    2
  • 3
    3
  • 4
    4
  • 5
    5
  • 6
    6
  • 7
    7
  • 8
    8
  • 9
    9
Average Reading Time Login to Personalize

Lecture Notes on Knot Invariants

No reviews were found. Please log in to write a review if you've read this book.

Item added to cart

9789814675987 bookshelf
Lecture Notes on Knot ...
$30.00
QTY: 1

9789814675987 bookshelf

Write a Review for Lecture Notes on Knot Invariants

by Weiping Li

Average Rating:
×

Lecture Notes on Knot Invariants has been added

Lecture Notes on Knot Invariants has been added to your wish list.

Ok